Path problems in generalized stars, complete graphs, and brick wall graphs
نویسندگان
چکیده
منابع مشابه
The k-Path Vertex Cover in Product Graphs of Stars and Complete Graphs∗
For a graph G and a positive integer k, a subset S of vertices of G is called a k-path vertex cover if every path of order k in G contains at least one vertex from S. The cardinality of a minimum k-path vertex cover is denoted by ψk(G). In this paper, we present the exact values of ψk in some product graphs of stars and complete graphs.
متن کاملMETA-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملPath Problems in Temporal Graphs
Shortest path is a fundamental graph problem with numerous applications. However, the concept of classic shortest path is insufficient or even flawed in a temporal graph, as the temporal information determines the order of activities along any path. In this paper, we show the shortcomings of classic shortest path in a temporal graph, and study various concepts of “shortest” path for temporal gr...
متن کاملOn Generalized Coprime Graphs
Paul Erdos defined the concept of coprime graph and studied about cycles in coprime graphs. In this paper this concept is generalized and a new graph called Generalized coprime graph is introduced. Having observed certain basic properties of the new graph it is proved that the chromatic number and the clique number of some generalized coprime graphs are equal.
متن کاملBrick partitions of graphs
For each rational number q ≥ 1, we describe two partitions of the vertex set of a graph G, called the q-brick partition and the q-superbrick partition. The special cases when q = 1 are the partitions given by the connected components and the 2-edge-connected components of G, respectively. We obtain structural results on these partitions and describe their relationship to the principal partition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2006
ISSN: 0166-218X
DOI: 10.1016/j.dam.2005.05.017